Extensions 1→N→G→Q→1 with N=C322Q8 and Q=C22

Direct product G=N×Q with N=C322Q8 and Q=C22
dρLabelID
C22×C322Q896C2^2xC3^2:2Q8288,975

Semidirect products G=N:Q with N=C322Q8 and Q=C22
extensionφ:Q→Out NdρLabelID
C322Q81C22 = C3⋊S32SD16φ: C22/C1C22 ⊆ Out C322Q8248+C3^2:2Q8:1C2^2288,875
C322Q82C22 = C62.12D4φ: C22/C1C22 ⊆ Out C322Q8244C3^2:2Q8:2C2^2288,884
C322Q83C22 = S3×D42S3φ: C22/C1C22 ⊆ Out C322Q8488-C3^2:2Q8:3C2^2288,959
C322Q84C22 = Dic612D6φ: C22/C1C22 ⊆ Out C322Q8248+C3^2:2Q8:4C2^2288,960
C322Q85C22 = S32×Q8φ: C22/C1C22 ⊆ Out C322Q8488-C3^2:2Q8:5C2^2288,965
C322Q86C22 = C32⋊2+ 1+4φ: C22/C1C22 ⊆ Out C322Q8244C3^2:2Q8:6C2^2288,978
C322Q87C22 = C32⋊D8⋊C2φ: C22/C2C2 ⊆ Out C322Q8244C3^2:2Q8:7C2^2288,872
C322Q88C22 = C2×C322SD16φ: C22/C2C2 ⊆ Out C322Q848C3^2:2Q8:8C2^2288,886
C322Q89C22 = C2×S3×Dic6φ: C22/C2C2 ⊆ Out C322Q896C3^2:2Q8:9C2^2288,942
C322Q810C22 = C2×Dic3.D6φ: C22/C2C2 ⊆ Out C322Q848C3^2:2Q8:10C2^2288,947
C322Q811C22 = S3×C4○D12φ: C22/C2C2 ⊆ Out C322Q8484C3^2:2Q8:11C2^2288,953
C322Q812C22 = D1223D6φ: C22/C2C2 ⊆ Out C322Q8244C3^2:2Q8:12C2^2288,954
C322Q813C22 = D1212D6φ: C22/C2C2 ⊆ Out C322Q8488-C3^2:2Q8:13C2^2288,961
C322Q814C22 = D1213D6φ: C22/C2C2 ⊆ Out C322Q8248+C3^2:2Q8:14C2^2288,962
C322Q815C22 = C2×D6.3D6φ: C22/C2C2 ⊆ Out C322Q848C3^2:2Q8:15C2^2288,970
C322Q816C22 = C2×D6.4D6φ: C22/C2C2 ⊆ Out C322Q848C3^2:2Q8:16C2^2288,971
C322Q817C22 = C2×D6.D6φ: trivial image48C3^2:2Q8:17C2^2288,948
C322Q818C22 = D1216D6φ: trivial image488+C3^2:2Q8:18C2^2288,968

Non-split extensions G=N.Q with N=C322Q8 and Q=C22
extensionφ:Q→Out NdρLabelID
C322Q8.1C22 = C32⋊Q16⋊C2φ: C22/C1C22 ⊆ Out C322Q8484C3^2:2Q8.1C2^2288,874
C322Q8.2C22 = C3⋊S3⋊Q16φ: C22/C1C22 ⊆ Out C322Q8488-C3^2:2Q8.2C2^2288,876
C322Q8.3C22 = C62.13D4φ: C22/C1C22 ⊆ Out C322Q8488-C3^2:2Q8.3C2^2288,885
C322Q8.4C22 = D12.33D6φ: C22/C1C22 ⊆ Out C322Q8484C3^2:2Q8.4C2^2288,945
C322Q8.5C22 = D12.34D6φ: C22/C1C22 ⊆ Out C322Q8484-C3^2:2Q8.5C2^2288,946
C322Q8.6C22 = C32⋊D85C2φ: C22/C2C2 ⊆ Out C322Q8484C3^2:2Q8.6C2^2288,871
C322Q8.7C22 = C62.15D4φ: C22/C2C2 ⊆ Out C322Q8484-C3^2:2Q8.7C2^2288,887
C322Q8.8C22 = C2×C32⋊Q16φ: C22/C2C2 ⊆ Out C322Q896C3^2:2Q8.8C2^2288,888
C322Q8.9C22 = Dic6.24D6φ: C22/C2C2 ⊆ Out C322Q8488-C3^2:2Q8.9C2^2288,957
C322Q8.10C22 = D12.25D6φ: C22/C2C2 ⊆ Out C322Q8488-C3^2:2Q8.10C2^2288,963
C322Q8.11C22 = Dic6.26D6φ: C22/C2C2 ⊆ Out C322Q8488+C3^2:2Q8.11C2^2288,964

׿
×
𝔽